# Portal:Mathematics

## The Mathematics Portal

Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. It is used for calculation and considered as the most important subject. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

Refresh with new selections below (purge)

## Selected article ¨C show another Carl Friedrich GaussImage credit: C.A. Jensen (1792-1870)

Carl Friedrich Gauss (30 April 1777 – 23 February 1855) was a German mathematician and scientist of profound genius who contributed significantly to many fields, including number theory, analysis, differential geometry, geodesy, electricity, magnetism, astronomy and optics. Known as "the prince of mathematicians" and "greatest mathematician since antiquity", Gauss had a remarkable influence in many fields of mathematics and science and is ranked as one of history's most influential mathematicians.

Gauss was a child prodigy, of whom there are many anecdotes pertaining to his astounding precocity while a mere toddler, and made his first ground-breaking mathematical discoveries while still a teenager. He completed Disquisitiones Arithmeticae, his magnum opus, at the age of twenty-one (1798), though it wasn't published until 1801. This work was fundamental in consolidating number theory as a discipline and has shaped the field to the present day. (Full article...)

## Selected image ¨C show another

A Lorenz curve shows the distribution of income in a population by plotting the percentage y of total income that is earned by the bottom x percent of households (or individuals). Developed by economist Max O. Lorenz in 1905 to describe income inequality, the curve is typically plotted with a diagonal line (reflecting a hypothetical "equal" distribution of incomes) for comparison. This leads naturally to a derived quantity called the Gini coefficient, first published in 1912 by Corrado Gini, which is the ratio of the area between the diagonal line and the curve (area A in this graph) to the area under the diagonal line (the sum of A and B); higher Gini coefficients reflect more income inequality. Lorenz's curve is a special kind of cumulative distribution function used to characterize quantities that follow a Pareto distribution, a type of power law. More specifically, it can be used to illustrate the Pareto principle, a rule of thumb stating that roughly 80% of the identified "effects" in a given phenomenon under study will come from 20% of the "causes" (in the first decade of the 20th century Vilfredo Pareto showed that 80% of the land in Italy was owned by 20% of the population). As this so-called "80¨C20 rule" implies a specific level of inequality (i.e., a specific power law), more or less extreme cases are possible. For example, in the United States in the first half of the 2010s, 95% of the financial wealth was held by the top 20% of wealthiest households (in 2010), the top 1% of individuals held approximately 40% of the wealth (2012), and the top 1% of income earners received approximately 20% of the pre-tax income (2013). Observations such as these have brought income and wealth inequality into popular consciousness and have given rise to various slogans about "the 1%" versus "the 99%".

## Did you know ¨C view different entries

Showing 7 items out of 75

## WikiProjects

The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

Project pages

Essays

Subprojects

Related projects

## Subcategories

Select [?] to view subcategories

## Index of mathematics articles

 ARTICLE INDEX: MATHEMATICIANS:

## Related portals Science History of science Systems science Mathematics Biology Chemistry Physics Earth sciences Technology

## In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books Commons
Media Wikinews
News Wikiquote
Quotations Wikisource
Texts Wikiversity
Learning resources Wiktionary
Definitions Wikidata
Database 